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Abstract

This report describes a FORTRAN II program which is used to
evaluate the effect of a spatially extended analyzer and detector on the
measurement of the left-right asymmetry in the scattering of polarized
particles. In particular, the initial scatterer is assumed to be a point
source and the analyzer (second scatterer) and detector are treated as
planes whose dimensions are adjustable as input data in the program.
The calculation also allows for any given angular distribution of particle
flux from the source if this distribution can be represented as a finite
power series in the cosine of the angle of emission. A similar repre-
sentation is used to describe the scattering properties of the analyzer.
The integrals over the finite dimensions of the analyzer and detector
are evaluated by a standard Newton-Cotes quadrature approximation
for multidimensional integration. A discussion of this approximation
as well as a listing of the FORTRAN program are included as appendices

to this report.



I. INTRODUCTION

A number of authors1 have pointed out that the particles produced
in a nuclear scattering or reaction usually are partially polarized in a
plane perpendicular to the plane of the scattering or reaction. The usual
method of measuring the amount of this polarization is a double-scattering
experiment in which the ratio of the counting rates in two detectors* set at
equal angles on opposite sides of the second scatterer (analyzer) is deter-
mined. This ratio L/R, the counting rate in the detector placed at the 'left"

of the direction of the beam of nucleons incident on the second scatterer

divided by the rate in the one at the nright", is related to the polarization by

1- P1(91) PZ(OZ)

—I;{_:I+P9 P, (0 4 (1)
1(6) P,(6,)

where Pl(el) is the initial spin polarization of nucleons emanating from the
source at an angle 91 with respect to the direction of incidence of an un-
polarized initial beam (Fig. 1) and PZ(QZ) is the polarization that results
when an unpolarized beam of nucleons incident on the analyzer is scattered
through an angle 92. The reaction and scattering planes at the source and
at the analyzer coincide. The sign convention in Eq. (1) is based on the
assumption that 61 is measured in a clockwise sense from the direction of
incidence at the source as is indicated in Fig. 1. Furthermore, the sign
of the polarizat:ion2 at each scattering is taken to be positive in the direction
of IZi X Kf, where Tc._l and Ta.f are the respective wave numbers of the inci-
dent and outgoing particles.

As a matter of convenience in the discussion to follow, the initial

'Usually a single detector is used in this type of measurement.
The ratio of the counting rates on the two sides of the scatterer is deter-

mined by moving the detector first to one position and then to the other.



reaction at the source is specified to be of the type A(p, n)B in which polar-
ized neutrons result when target nuclei A are bombarded with protons, The
polarized neutron beam is scattered by an analyzer and the left-right asym-
metry of this second scattering is measured.

Equation (1) is strictly valid only for the idealized case in which
the neutron source, the analyzer, and the detectors can be represented
as geometrical points, In practice, therefore, the quantities PI(GI) and
PZ(GZ)’ as determined by Eq. (1), represent some sort of average over the
differential cross sections and over the extended dimensions of the experi-
mental layout involved in the measurement of LL/R. In order to insure a
physically meaningful measurement of the product PIPZ it is necessary to
investigate the dependence of this product, as determined by Ea, (1), on
the particular geometrical factors involved in any given experimental
arrangement. In this report we present the results of a calculation that in-
dicates the type of correction which must be applied to left-right asymmetry
measurements in order to take into account the effects arising from the
finite dimensions of the analyzer and detector, from the anisotropy of the
neutron flux from the A(p, n)B source, and from the scattering properties
of the analyzer. In the course of the calculation Eq. (1) is rewritten in a
form such that P1 P2 is independent of the experimental layout and the
quantities PI(OI) and PZ(QZ) are redefined to be the polarizations at the mean

angles 6, and 62 determined by this geometric arrangement.

1
The general expression for the ratio L/R is derived in Sec. II for
the case of a point source, finite analyzer, and finite detector. This ex-
pression is more general than those used in previous similar calcu-
la.l:ions3 in that the analyzer and detector are treated as planes rather
than approximated as points and lines. Our final equation for the meas-
ured ratio LL/R involves two different families of four-dimensional inte-
grals, These integrals are evaluated by means of a standard Newton-

Cotes quadrature approximation appropriate for multidimensional inte-

gration. The details of this approximate integration are given in



Appendix I. Although the actual integrations are performed for a specific
geometric configuration, namely that in which the analyzer and detector
are rectangular areas, the general features of the results should be
applicable to a variety of different shapes of analyzers and detectors.
Furthermore, only a slight redefinition of the integration variables is re-
quired in order to obtain results for other standard experimental arrange-
ments. In Appendix II we give the FORTRAN listing for the calculation as
it was prepared for use on the IBM-704 fast digital computer at Argonne.
The numerical results of a calculation for a specific example are
discussed in Sec. III, and in Sec. IV suggestions are given for possible

uses of this type of calculation in other connections.

II. EFFECTS OF THE EXPERIMENTAL CONFIGURATION
ON THE MEASURED RATIO L/R

The experimental arrangement which is of primary concern in this
report has been utilized previously at Argonne to study the angular distri-
butions of neutrons scattered from various nuclei. G The same setup, with
slight modifications, is now being used to study the scattering of polarized
neutrons. 3 These calculations were occasioned by this latter type of ex-
periment.

The neutron detectors are arrays of BF3 counters in an oil moder-
ator, surrounded by large shield tanks which are filled with borated water.
Neutrons scattered by the analyzer enter the detectors by passing through
rectangular collimating holes cut in the shield. The detectors ride on a
circular track, with their collimators pointing toward a rectangular
slab-shaped scattering sample at its center. This sample serves as an
analyzer in the present experiments. The analyzer is "illuminated' by
a rectangular conically-collimated beam of neutrons from a ''point source'
located at the center of a shielded source tank. The neutrons are pro-

duced in (p, n) reactions, the protons being accelerated in the Argonne
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4-Mev Van de Graaff accelerator. -

In this section an expression for the ratio /R is derived without
specific reference to an actual geometric arrangement. However, the
FORTRAN program listed in Appendix II is applicable only to the slab-
shaped analyzer and detectors described above.

The experimental arrangement is shown schematically in Fig. 1.
With reference to this figure the
symbols used in the derivation
are defined as follows, Unpolar-
ized protons are incident on a
(X2 %512, )
point source S at the origin of the
(X, Y, Z) coordinate system. The

direction of incidence of these

particles is denoted by the unit v

~ : : i :
vector r0 with direction cosines

INCIDENT PARTICLES

(0, -sinel, cos 91). The protons

initiate a reaction at S, giving rise

to neutrons which are emitted X
‘. This

1 Fig. 1. Schematic diagram defin-

direction makes an angle g with ing the symbols used in discus-

sing the situation in which neutrons

from point source S are scattered

proton beam. The polarization from a slab-shaped scattering

target (analyzer) T and are counted
by slab-shaped detectors L and R.

along a direction ?I / l_f
the direction of incidence of the

of this neutron beam is denoted

by -ﬁl(ﬁ)- A scattering target Protons inducing the (p, n) reac-
(analyzer) T is located such that tion at S are incideﬁnt in the direc-

tion of unit vector ¥ . The neutrons
its center is at the point (0, 0,£,) are emitted along paths such as

T. and are scattered at T along

in the (X, Y, Z) coordinate system. 2 2ol
such paths as T and e

;':A more thorough description of this experimental setup may be

found in reference 4,



Ul :
This target is skewed such that its normal makes an angle i with re-
spect to the positive Z axis. The neutrons scatter from T through the

angles @R and ®L and move along the vectors ?R and T to the detectors

R and L, respectively. The detectors are oriented so that their center

points lie in the (Y, Z) plane at a perpendicular distance !2 from the point
(0, 0,11) on T. The symbols QL and BR denote respectively the mean scat-
tering angles determined by the center points of the analyzer T and of the

detectors L and R. In a measurement of the ratio L/R the condition

is assumed to be satisfied.

Let QT denote the solid angle that T subtends at S and let QL and
Q denote the solid angles that L and R subtend at an arbitrary point on T.
If the effects of absorption and multiple scattering within the sample T are
neglected, expression (1) for the ratio of the counting rates in the detectors

is replaced by

z fﬂ f dQ_ de, N, o)e (B) v, (® ) [1 +'f>1(;3) . 1‘32(®L)]
R = e . (2)
fQTfQL de_ de. N(B,a)o,(B) 7,(@) [1 + F(F) * P,(&;)]

T

Here o (B) is the differential cross section for the (p, n) reaction at S,
o (@) [1 + P ((3) PZ(@))] is the differential cross section for the scattering
of a polar1zed neutron beam from the analyzer T, and N(B, a) is the
relative thickness of the analyzer as measured in the direction of incidence.
The vector _152(@) is the polarization that would result if an unpolarized
beam incident on T was scattered through an angle ® at T.

In order to carry out the integrations indicated in Eq. (2) for the

rectangular analyzer and detectors described above, it is convenient to



introduce the coordinates (y,e) in the plane of the analyzer T by means of

the transformation

(x,.¥,,2)—> (y,esing, £ - ecosa) , (32)

where (xl’ vy ZI) is any point on T. Similarly we define coordinates (q, §)

in the planes of the detectors by the transformations

(XZ’ YZ’ZZ)RH (n,lz sinGR SEENCOS GR, 11 +lzcoseR - gsinGR) s (3b)
and
- i 3
(x 2 YZ’ZZ) —> (70, ! sm6 + gcose 11 +12 cos(}R + gsmeR) s (3c)

where (xz, Yy ZZ)R, L denote points on the detectors R, L. We introduce

these transformations into Eq. (2) to obtain

L fay [de [dg fdn (n . 'r' 1)N(a B) G @
R = B

fay fde fag fdn @ - rl/rl) N(a, B) Gp

-

Gp = (- Tp/r3) o)1+ Pi(B) Byep) &) - B))

where D represents either L or R and

i

1
Hla bl A c05q+zI sina
A A A ~
e (xx1 +yy1 +zz1)/r1 .



2 2+Z2
1'1 :X1+Y1 1 5

la) ~ "N ~ o
Epti [X(XZ-X1)+Y(Y2-Yl)+z(z2 Zl)]/rR,L )
2 2 Z A 2
Il CA S TR N z,) .
,1}0 = -?rsin@l +/£cose1 =
I A A A A :
s rox r1/|r0)< rll_rOX r1/|s1nﬁ| 5
A A A A A A A .
= = sin ® .
B, SEakrs gl X ERin P R IR OR
A
QR,L = 9sin9R’L+zcoseRJL 5
A A A
n = ycosa + zsSsina
T
and
N A
COS®R,L =
A A
cosfB = To " rl

The quantities with the carets are unit vectors in the directions indicated.
We have omitted the subscripts R and L from the coordinates (XZ’ YZ’ ZZ)
in these relations. The triad (3‘;, ?, 2) denotes a set of unit vectors along
the axes of the (X, Y, Z) coordinate system. These rectangular coordi-
nates are given in terms of the integration variables by Egs. (3). The
use of the notation ﬁz for two different quantities in Eq. (4) causes no

confusion since the numerator of this expression refers to the L counter



and the denominator to the R counter.
The generality of the present derivation is retained by expanding the

cross sections and polarizations occurring in Eq. (4) in the form

24 o 20-1 -
o) = ) A cos’s, o (BIP(B) = ) a_cos"Bsing |
n=0 n=0
(5)
1 1
21 Kk 24 -1 Kk
0'2(®) = kL_O Bkcos @, o'Z(G)PZ(@):kZ_IO bkcos ®sin® ,

where £ and £ denote the maximum values of the orbital angular momentum
associated with each reaction.

In an experiment one would like to obtain an expression for the
polarization product (evaluated at the nominal mean angles set by the
apparatus) in terms of the measured ratio L/R. This can be accomplished
most simply by introducing a correction factor p, which serves to correct

Eq. (2) for these effects of finite size. We write

1 - PI(GI) PZ(QZ)

L
—_— = p ———
R 1+ PI(GI)PZ(GZ)

(6)

where 8, = 0_ = - GL. After the explicit introduction of the expansions (5),

a comparison of Egs. (4) and (6) gives

Sy My -
= JR) T AR) AV; 2
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=1 2L -1
< R .

UL, R) = Zo kZJO S

= =

20

24 k
A) = Z/ Z A Bkcosnel. cos 92 5
NS A

and

20-1 24'-1 4 7 .
A) = E Z a b cos 6. cos 6 sinf sinf 5

n k 1 2 1 2
n=0 k=0

The symbols I and M Kk denote the integrals
n

n, k :
S % g aE
i 1l L,R LR
1 (R,L) = [ [dyde [ fd&dq E :
.k i R, L r =
- 1 R, L
X N(a, B) cosnf}cosk® (8a)
1 R, L 4
and
4 % T
n L] i
G O L s
o : i R
X N cos” cosk® sinf sin @ (8b)
(a,B) B R,Llﬁ Bhian

The integrations in Eqs. (8) are to be per formed over the illuminated area
T of the analyzer an& over the sensitive area R or L of the detectors. The
limits on the integrals are to be measured in the planes of the analyzer
and detector, Appendix I discusses the method of numerical integration
used to evaluate these integrals. Appendix II describes the FORTRAN

program used, for a given geometric arrangement, to evaluate the inte-



grals (8) for a sequence of values of n and k, Once these integrals have
been determined, the factor p can be evaluated in terms of the coeffi-
cients that determine the differential cross sections for polarized and un-
polarized nucleons.

The actual evaluation of the factor p requires, of course, know-
ledge of the angular dependence of the cross sections appearing in Eq. (3).
This presupposed information is, in fact, more detailed than that which is
being measured. However, the values of the integrals in Egs. (8) are not
dependent on any details of these cross sections and once these are evalu-
ated for a particular experimental setup it is usually possible to determine
the magnitude of p by the use of a reasonable approximation to the form
of the angular distributions. An illustration of this is given in Sec. III of
this report. From such approximations it is possible to determine whether

a modification of the experimental setup is necessary.

III. A NUMERICAL EXAMPLE

The use of the method discussed above is illustrated in this
section by detailing the results of a particular numerical calculation. The
parameters that are used are those that describe the experimental setup
for the Argonne polarization measurements, > In terms of symbols defined

previously these are: £, = 59 inches, £ = 82.5 inches, a = 900, 91 = 510,

1 2

and 92 = GR = (). = 450. The "illuminated" area 3 of the analyzer T is a

L
4 X 16 -inch rectangle (as measured in the plane of T), and the sensitive
area of each detector is a 6 X 16 - inch rectangle. Thus the ranges of

integration in Eqs. (8) are

“In general the limits of the ¢ integration depend on the angle a.
For a = /2, however, this dependence cancels and the limits are simply
the dimensions of the neutron beam at T. The case in whicha # /2 is

discussed in Appendix II.

11
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The quantities listed above serve as input data to the FORTRAN program.
The data sheet, Table II, appropriate to this example as well as the
tprogram output'', Table III, namely the numerical values of the integrals
in Eqs. (8), are included in Appendix II of this report.

If we assume that the conditions 2¢ < 2 and 2{' < 2 are satisfied,

the expansion (5) for the cross sections have the forms

2
ql(ﬁ) = A0 + A1 cosp + A2 cos B , (9a)
g-l(ﬁ)Pl(ﬁ) =2, sinB + a, cosBsinf (9b)
(@) =B_+B cos®+B &
T, =B, 1cs + 2cos ® , (9¢c)
0‘2(®)P2(®) = b0 sin® + b1 cos ®sin® . (9d)

In terms of these coefficients and the results of the numerical evaluation
of the integrals as given in Table III, Appendix II the correction factor,

Eq. (7), becomes

8= 10"7‘,31/((1l -4d))
p = o ) (10)
1-10 "b/(d) +d,)

where
a=(0.16A_ + 0.20A
( 1 Z) B0 + (0.89A0 & 0.66A1 + 0.45A2) B1
+(1.18A + 0.80A
( 0 1 + 0. SZAZ) B2

+ (0.33a

]

0.08 -
o +0.08a,) by ~(0.352 +0.29a) b,

b= (0. 21A. + 0.25A B _+ (0.89 + 0.7 + 9
+(1.18A + 0.90A_ + 7
0 1 0.67A )BZ

+(0.8la_+0.65a_ )b
) byt (1,092  +0.78a )b,

0
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= . 1 . .2
dy = (Aj+0.63A  +0.40A,)B, + (0.71A  +0.45A  +0.284,)B,
+(0.50A +0.32A  +0.20A,)B, ,
2 3
d, = (0.55a, +0.35a,)b +(0.39a  +0.25a )b,

In this type of experiment, information usually is available concern-
ing the angular scattering and polarization properties either of the source S
or of the analyzer T. In the present example we assume that the analyzer is
a slab of natural magnesium and that the neutron source is the Li7(p, n)Be
reaction, At a proton energy EP of approximately 2, 28 Mev, the resultant
neutrons emerging at 51° with respect to the direction of incidence of the
proton beam have an energy of about 0.43 Mev. The differential cross
section and polarization of neutrons scattered by magnesium at this energy
have been mea.sured6 and are given approximately by Egs. (9c) and (9d),

where

B, =0.62, B, =0.40, B,=0.76,

and

B Gi36, b =1.16.

7 7/
For Ep =~ 2,28 Mev, the differential cross section for the Li (p, n)Be
reaction is represented in the laboratory system by Eq. (9a) when the co-
efficients* have the values

A, =0.029, A =004, A, = 0.021

sk

"These coefficients were obtained from those given by R. Taschek
and A, Hemmendinger, Phys. Rev. 74, 373 (1948). In this reference
the coefficients are reported in terms of coefficients in a Legendre-
polynomial expansion of the cross section relative to the center-of-mass
system of coordinates. Thus it was necessary to transform into the

representation used above, viz., a power-series expansion in terms of

cosines in the laboratory coordinate system.
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For these values of the cross-section coefficients the quantities defined by

the relations following Eq. (10) become

®
"

0.09 - 0,29a0 = 0.3131 s

b = 0.10+1.56a0+1.14a1 z

[e )
1]

0.08
1 £

¢l = 0.653.0 +0.4la,
As stated previously, the values of the polarization coefficients a, and a,
could be obtained only from considerably more detailed measurements

than any being made. Consequently it is unreasonable to assume that these
data are available for the evaluation of p. Fortunately, at least for the
experimental arrangement considered here, the correction factor is not
particularly sensitive to the precise values of 2, and a., at least within the
range of values which are physically possible for these coefficients.

This can be shown by use of the fact that by definition of the polar-

ization we have
IPZ(®)lsl 5 0<®<m.

This condition in conjunction with Eqs. (9a) and (9b) shows that the unde-

termined polarization coefficients must satisfy the inequalities

[aolsAo

and

|a, | <2la -1—[A|+1A] if aa <0
1 0o VZ 202 0°1

2 1 . .
£ -ZYZ_AO[aIIs[AO-—,VT-|A1|+EA2] if aja;>0.
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In the case which we are considering, these conditions become
-0.03 sao < 0,03,

and

-0.08$aI <0.08

For values of these coefficients within this range it is possible to show

that the value of p, Eq. (10), satisfies the inequality
[1-p]|<0.04.

Thus for this determination of the polarization PI(SIO) associated with
the Li7(p, n) reaction at EP = 2,28 Mev, the correction due to geometric
factors is 4% at most.

If the polarization Pl(ﬁ) in the Li(p, n) reaction is assumed to vary

>

as sinf, measurements of the neutron polarization indicate that the

quantity Pl([3)o-1([3) has approximately the form of Eq. (9b), where

= -0.015 = -0. .
a,=-0.015, a 0.03

For these values the correction factor p is found to have the value 0.997.

IvV. DISCUSSION

Further calculations have been made for different values of ll and
12 but with all other geometrical and cross-section parameters fixed at

the values listed in Sec. III. In particular, JZZ was fixed at a value of

10 inches and p was evaluated for 11 equal to 20, 6, and 2 inches. De-
creasing jzl from 20 to 2 inches corresponds to about a 40-fold increase
in the solid angle the Mg analyzer subtended at the neutron source. This

increase in solid angle resulted in a decrease in the value of the correction
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factor p. On the other hand, in exactly the same experimental arrange-
ment but with all angular distribution coefficients set equal to each other,

i.e., with

il

the value of p was found to increase as the solid angle of the analyzer was
increased. The actual values of p calculated for these parameters are

given in Table I.

TABLE I. Values of p calculated for different parameters in
the experimental arrangement involving slab-shaped scatterers
and detectors described in Sec. III. The areas of scatterer and
detectors are the same as in the calculation of Sec. III. In Case
A the coefficients describing the cross sections are the same as
those used in the calculations in Sec. III. In Case B these coeffi-

cients are assumed equal to each other.

!Zl JZZ P
(inches) (inches) Case A Case B
20 10 0.933 1.082
6 10 0.942 W, 28
2 10 0.992 1.623

These results serve to emphasize that, in experiments of the type
discussed here, the scattering (or reaction) properties of the source and
analyzer are highly correlated with each other and with the sizes and

positions of the analyzer and detectors. Because of the complexity of
these correlations, it is obviously impossible to draw any general con-

clusions concerning the magnitude of the correction factor p. Even



17/

for a specified experimental arrangement it is necessary to limit the com-
plexity of the relevant cross sections before a reasonable estimate of the
value of this correction factor can be made. It is obvious that so many
sets of conditions are experimentally realizable that no comprehensive
survey of the behavior of p is possible. The program and methods des-
cribed above, however, may be of value in the assessment of the error to
be expected as a result of the layout of a proposed experiment.

Although the present calculations are limited to the special case of
a rectangular-slab analyzer and a rectangular detector, the program should
be applicable to other experimental arrangements. For example, in so far
as attenuation and multiple-scattering can be neglected, the present
methods of integration should be applicable to analyzers and detectors in
the form of cylinders, at least for those cases in which 21 and 12 are
large compared with the diameters of the cylinders.

This type of calculation also has use as a tool in the determination
of the most suitable geometrical arrangement for left-right asymmetry
measurements and as an aid in the alignment of the experimental apparatus,
Suppose, for example, that one knows the distribution of flux incident on
an analyzer and that the material used as analyzer shows no polarization
effects at the energy of interest. One then can calculate the extent of the
left-right asymmetry that can be attributed solely to geometrical effects.
The results of the calculation will indicate whether a modification in the
experimental setup is necessary, and a comparison of the calculated and
measured ratios L/R will indicate any possible misalignment.

>

As has been pointed out by a number of authors, the instrumen-
tal asymmetries in these left-right intensity measurements can be avoided
entirely by using a magnetic field between the neutron source and the
analyzer to cause the neutron spin to precess through m radians. (An
electromagnet is being used at the present time at Argonne in the study

of neutron polarization,) Even in this case, however, it is desirable

to know how the nominal mean angle of scattering set by the experimental



arrangement compares with the ntrue" mean angle. Actually a 'true' mean
angle cannot be defined without reference to the specific cross sections
of the source and analyzer. However, a general result can be obtained if

the mean cosines of the angle of scatter are defined by

—

P =
<cos 6>Av = 100

With these definitions, the integrals of Eq. (8a) allow a proper series ex-
pansion of all relevant cross sections in terms of the 'true' angle of

scatter. This point is discussed in detail in reference 4.

APPENDIX I. A QUADRATURE APPROXIMATION IN
FOUR-DIMENSIONAL INTEGRATION

Each of the integrals considered in this report can be written in the

form

oD E =
b - fay fde fan [ag Fven. 8) . (I.1)
Yo %0 Mo %o

where F is any one of the functions in Eqs. (8a) and (8b). For a given range
® of the integration variables, we wish to obtain a numerical approximation,
say I, to the value of*o . The method that is used is the standard Newton-
Cotes quadrature approximation extended to the treatment of multidimen-
sional integrals. Since this extension is not considered in the standard
texts on numerical methods, it is given here in some detail,

The general method of approximation is quite simple. The region
® of integration is subdivided into a number of nonoverlapping subregions,

in each of which the function F is approximated by a polynomial & of the
n

form



n A K v
Gventl= ), ay Ty D TT gy ) 77 )
)\,p,,v,o'—_-o a=1 ﬁ:l \{:1

(1. 2)
[
W e R
of=
p=1
where the coefficients a)\p = are required to satisfy the conditions
v
fI’n(Yp, € Ak} = Fp, e (YP,E o Ny ) € R/ (I.3)
In Eq. (I.3) we have introduced the notation
B Ehe ) (L. 4)

The approximate value I of'io is determined by carrying out the integration
of the polynomial q:on in each subregion and adding the results. The following
derivation applies to one such subregion of ®. The specific division of ®
into subregions and an error estimation for this approximation are discussed
in Appendix II.

The development of the method is complicated by an unavoidably
tedious formalism which we proceed to introduce. If the points (Yp’ Mg gt)

are chosen such that

YP+1:Yp+h’ o= G ks e e R Tee

then

A pMpl/(p-2)t , A<p

e N

a=1 0 A >aDE

1G]



20

with similar results for the other products in Eq. (I.2). For points

determined by these conditions, Eq. (I. 2) can be rewritten in the form

p:r:l_\s)t )\ }J-V T pl rlslt|
i oo Lrtslt! '
B (Vo epongoby) x,pév,azoa"“‘” bm S (r-n)! (5-v)t (t-0)"

In order to evaluate the coefficients a

points of the given function F, it is convenient to define the displacement

operators E , where
pr)r,s,t o Fp+1,r,s,t 4 Ee Fp,r,s t Fp,r+1,s,t ’
Ean,r,s,t T Fp,r,s+1,t ’ Eng,r,s,t . Fp,r,s,t+1 :
as well as the difference operators A)\HWT, where

T o e S B - Y E, S
N € n

3

In terms of these operators we have

s (e
F = 3 1D, Em AT
p,r,s,t Y € n €& 0,0,0,0

ANy

165
p,I,s,t YW :
- R p, ¥, 8 pvo
= ), GYC)e)() a 12 .
X, ,v,0=0 S J 0,0,0,0

Comparing this result with Eq. (I.5), we see that the conditions expressed

in Eq. (I.4) are satisfied provided the coefficients a are chosen to be
T

(1. 5)

in terms of values at specified
\pvo

6)



A)\p.vtr F

0,0,0,0

Ry

a =
i e e

provided that the inequality

max(p,r,s,t) <n

holds. Here n is the degree of the polynomial @n.

Let us define the approximate integral In by the expression
r E H =
Jav fde [dn [dE & (v.ent) .

Yo ‘0 Mo %o

Further, we introduce the new integration variables g, e, 0, and z,
gh:y-yo, keze—eoJ fO:T]—no, mz:g-go

We then have

Y'Y)\:h(g-)\): A= O R D

€ - € :k(e— ), }.L:o,.-._,r,
M M

n-nvzl(o—v), v=0...,s5,

= = - =0, 5 0 0 5 &

5 &G m(z - o), tr s

In terms of these variables, the integral In can be written as

(T-vyy)/h (E-e )/k (H-ng)/t (Z-€,)/m
1 :f hdg f Q f Zdof mdz @(geoz),
0 0 0

n

21
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where

i A)\|.Lv<:'

0 0,0,0
3 (2.e.02)= ), e 7T(g a+1)7/(e B+1)

\,p,v,0=0

v a
x 77 (o-y+l) 7/ (z-ptl) .
'\{;1 p:].

The increments h, k,£, and m are determined by preassigning in-

tegers q ,9,9 ,9q, interms of which
Y € m §

h= (P-ygl/a, k= (B-eglly, = (Homghla, m = E-EgMa, .

In order that all points at which the integrandneeds be evaluated lie within

the limits of integration it is necessary that

n < min (9,9 ,9 ,9,) - 1.8
e, (1. 8)

Perform the indicated integrations in Eq. (I. 7) and make use of the ex-

pansion
Apve L a+b+c+d \
L
e a,b,c,d:O
X E)\—a pn-b g’ Eo‘-d
€ n s 0,0,0,0
where

=k
€ n & 0,0,0,0 \-a,u-b,v-c,o-d



Then we obtain

n
e P;s t=0 Fp,r,s,t Bpaf,s,t .
where
5 BNl VT S L LN
p.T,s,t phrlsiie! \=p (N-p)t A =2 (u-1)! T
n v n [n
= &) (n) o (-1) (&)
X Lo S L e %
and
q. x
oM o [ 77 (gatn)
0 a=1

with similar expression for Q(E ), Q(n), and Q(g).
o v [

APPENDIX II. THE INTEGRATION PROGRAM

Each of the integrals to be evaluated is expanded in the form
N ,N,N ,N
€

n
> N NN LN )
Nop,v,o=1 s

fov f[ac [an f

-y -e -y -

3
d¢ F(v.,e,n,8) =
£

where N ,N, N , Nﬁ are arbitrarily assigned positive integers and
Y {SaaT)

23
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(II. 1)
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U¥) UE) UF  UE)
Q(N O = dy [ de [ dn [ _d¢ Flv.em €) - (II. 2)
W T g T T (]

In Eq. (IL 2) the limits are defined by

sl
L) = ¥+ 52
Y

and

uw = T 20
Y,
with similar definitions for the limits of the other variables of integration,
The FORTRAN program which is described in this appendix
approximates the integrals in Eq. (IL 2) by the method discussed in
Appendix I and carries out the summation indicated in Eq. (II.1). The

integration net for each subregion of integration is determined by the choice

The degree n of the approximation polynomial (Ian is taken equal to 2,

consistent with the restriction expressed in Eq. (L. 8).

The input data for the program are supplied on the following
punched cards:

(1) The first data card consists of six floating-point fields, each of
width 12, and an implied decimal point is included between the sixth
and seventh columns in each field if it is not explicitly punched else-
where, The six fields contain the numerical values of 11, 12, Y,

&n, and g_ in this sequence. Here £  and 12 denote the distances

1
from source to analyzer and from analyzer to detector, respec-

tively, and 2y, 2¢ 27, and 2f are respectively the height of the
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illuminated portion of the analyzer, the width of the illuminated
portion of an identical analyzer oriented such that a = w /2, the
height of the detector, and the width of the detector. With the ex-
ception of ¢, each of these lengths is to be measured in the plane
of the analyzer or detector, The datum e depends on the position
of Sense Switch 1 and is discussed below.

(2) The second card contains six integer fields of 3 columns each. These
contain in turn the values 20 -1, 20 - 1, [defined in Eq. (5)],

Ny’Ne’N ,N_ [defined in Eq. (II.1)]. Each integer is to be "right
a

adjusted argld the first two are limited by the inequalities 2 -1<9
and 2£'-1 < 9.

(3) The third card is a problem-identification card which contains (up
to) 72 Hollerith characters, The character in the first column
controls the printer and is ordinarily ''1'" so that the first line of
each problem is printed on a separate page.

(4) The fourth card contains six floating-point fields of width 12 in
the same format as the first card. This card contains in sequence
the values of sinel, cosel, sin@z, 00592, sina, and cosa. These
angles are defined in Fig. 1 with 6, = QR or 92 = -GL. Note that the
integrations for the R and L detectors are treated as separate
problems,

(5) This card is necessary only if Sense Switch 1 is in the ""down''
position. The card consists of two floating point fields of width 12
and gives the values of the lower and upper limits of the illuminated
width of the analyzer, < and GH’ as measured in the plane of the
analyzer. The format is the same as for the first and fourth data
cards,

Two options are provided by sense switch settings in these calcu-
lations. Because the analyzer T may be skewed so that its normal makes
an angle % - a with respect to the positive direction of the Z axis, the

limits for the ¢ integration are ) to Ep’ where
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Tll
& 7 flsina-?COSa
and
TE
o ?cosa+llsina

Here 2¢ is the illuminated width of the analyzer in the ''unskewed' posi-
tion (a = w/2). For Sense Switch 1 in the "up" position, the limits ¢ and
¢ are calculated from the input datum € of card no. 1 and this fact is
pprinted on the '"output sheet.' For Sense Switch 1 in the ""down' position,
the limits < and EH are read into the program by means of card no. 5
and the limits calculated from the & of the first card are ignored.

For Sense Switch 2 in the ""down'' position, the information con-
tained on the first two data cards of the previous calculation is retained
in the memory and a new calculation is begun by reading ''new' third,
fourth, and possibly (depending on the setting of Sense Switch 1) fifth cards.
For Sense Switch 2 in the '"up' position, the reader expects an entirely
new set of data beginning with a '"new'' first card.

The format of the ''print out" is the following. The first line is
the problem identification as specified by the third data card. The second
lines indicates whether the ¢ limits were calculated internally or exter-
nally as provided by the position of Sense Switch 1. The third and fourth
printed lines identify the calculated values of the integrals as given in the
remainder of the ''print out." Columnwise these values are

cosnel coske2 i

n k
n k In k(L,R) cos 61 cos 62 Mn k(L,R)

>

X sin@1 sinGZ i

We again note that the calculations for the L and R detectors are treated

as separate calculations in the FORTRAN program.



The FORTRAN listing for this program is included at the end of this
Appendix,

It is possible to show that the principal error in the numerical
evaluation of integrals of the form of Eq. (I.1) is jointly proportional to

the four-volume of the integration and to

4 4 4
Zi(ri 8°F/0r, )riER ,
where the r, denote the variables of integration. Instead of including a
convergence test as part of the calculated program, it was felt that it would
be sufficient to test this property in the following manner. The scatterer

T and detectors L and R were placed so that the solid angles involved were

considerably larger than practical in any experimental setup. The family

of integrals In Kk and Mn ) Were then evaluated for the subdivision of R
givenby N =N =N = N§ = 2, The same calculation was repeated for the
R € yl
subdivision given by N =N =N = N§ = 3. The two sets of values ob-
Y €

tained in this way were found to agree within '"round off" although the
principal error in the second calculation is only a fifth of that in the first.
On the basis of this result it is concluded that the error involved in the

numerical integration procedure is negligible in these calculations.

27
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PROGRAM

TABLE II.

report,

Input data sheet for the calculation discussed in this

This problem is to be run with Sense Switch 1 in the "up"

position and Sense Switch 2 in the ''down'' position.

PROBLEM Finite Size Effects

ORIGIN ATOR DATE

PAGE

OF

1034/PHY
1

[2 [

3

[4 [s [¢

[7

8

|23455739‘0|2345“39]0|2J,4557av[0123 4se7890123 45678900123 4567890123 456789012345¢7890

11501

0y ¢ v 200 i L 1 8u]0 gy

b1 i3]0 g

ALPHA IS 90 DEG L1 IS 59

EPSILON LIMITS CALCULATED

CROSS SEC

C0s2 INTEGRAL

POWER
cos1
0 0
(] I,
(] 2
1 0
i 1
1 2
2 0
2 1
2 2

ALPHA IS 90 DEG L1

0420284E=03
0e14161E-03
0499020E=-04
0412728E-03
0488931E-04
0462234E-04
0479923E-04
0455884E-04

0439138E-04

25 L2 IS B2e5 THETA 2 IS 45 DEG LEFT

TION
MEAN

0410000E 01
0470711E 00
0e50000E 00
0462932E 00
0e44500E-00
0431466E-00
0439604E-00
0428005E-00

0419802E-00

IS 59425 L2 IS 82

EPSILON LIMITS CALCULATED

CROSS SECTION

cos2 INTEGRAL

POWER
cosl
0 o
0 1
] 2)
3 0
1 i
1l 2
2 0
2 il
2 2

0420284E-03
0414161E-03
0499020E-04
0412716E-03
0eBB709E=-U4
0461986E-04
0479763E=04
0455606E-04

0438827E-04

MEAN
0+10000E 01
0470711E 00
0450000E 00
0¢62932E 00
0e44500E-00
0e31466E-00
0439604E-00
0428005E-00

0419802E-00

POLARIZATION
INTEGRAL MEAN
-0411208E-03 -0e54953E 00
=0+78094E=-04 =-0438858E-00
—0e54501E-04 =-027477E-00
-0470251E-04 -0434583E-00
—0448987E-04 -0424454E-00
-0e34214E-04 =-0e17292E-00
-0.44060E-04 -0421764E-00
-0430748E-04 —0e15389E-00

-0421492E-04 -0410882E-00

«5 THETA 2 IS 45 DEG RIGHT

POLARIZATION
INTEGRAL MEAN
0410978E-03 0e54953E 00
0+76585E-04 0438858E-00
0e53515E=04 0+27477E-00
0+68844E-04 0434583E-00
Oe47994E-04 0e24454E=-00
0433513E-04 0417292E-00
0443201E-04 0e21764E-00
0430096E-04 0415389E-00

0+21000E-04 0.10882E-00

(a)

332222

0¢10000E 01
0¢69814E 00
048818E-00
0e62752E 00
0e43844E-00
0e30682E-00
0439402E-00
0427551E-00

0419295E-00

(b)

332222

0410000E 01
0e69814E 00
0e48818E-00
0e62689E 00
043734E-00
0430559E-00
0439324E-00
0e27414E-00

0419142E-00

25y 11|11 B2LI5O0 1 u | 11118y (i
b b P e o bns ol boried Dbl b b d Lo il it s
" 0S1°90| DEG L L LS 591,125 (121 LS 18121 15.'11:.&1511&‘2.' 50145 DEG LERT " BBR2222] (111
L 0TS | 1006201320 | 11 m10 70T [ 07O Ll v e 00O v fr i
1 LnLSit90) 10511509, 2150 R 1S 8l 200150 DA 12:°(1S:°145 " DRG RITGHT 1 1 13302020221 1 111101y
o 0udnnzas Lo onkzese | olzem [ cenroat b o e 0000 v L
TABLE III. Output data sheet for the calculation discussed in the
report: (a) for the L detector; (b) for the R detector,
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TABLE IV. FORTRAN Listing

£ 1034/PHY CORRFCTION TO RIGHT—IFFT ASYMMETRY ELWYN MONAHAN
DIMENSTION X1I13)¢Y1(3)9Z1(3)9X2(3),Y¥2(3),22(3)4F1(35353),F2(3,3,3),
XEALR, R, s, C1(8 R, R G213, 3, R, C3 (R, 2, R, ANSCS(10,10) ANSPD] 010,101
XsR1(3,3)4RR1(3553,3)9RR2{13,2,3)9RR3134343)9T1135314TT11343,2),
XTT2(3,2,23),TTR(3,3,3)
10 FORMAT(T72H]
X )
20 FORMAT(6F12.6)
30 FORMAT(ATZ)

40 FORMAT(5U4HO POWER CRGSS SECTION POLARIZATICN)
(.

50 FORMAT(55H0COS1 €0s2 INTEGRAL MEAN INTEGRAL MEAN)

60 FORMAT(IHO2TY,5F14.5)

407 FORMAT(23HOEPSILON LIMITS READ 1IN)
411 FORMAT(P6HOCDSTION I TMITS CAICULATED)

1111 READ 20, D1,D2,GRAR,FRAR,FTARPAR,XIRAR
READ 30, MI1CS,N2CS,NGIL,NETIL,NETAIL,NXIIL

=

READ 10
READ 2C, S1T,C1T7,S2T,C2T.SALPHALCALPHA

5 2]

400 IF(SENSFSWITCH1)401,402

401 READ20,EPARL,EPARU

402 GOTOuHOS

403 ERARL=(rDAR=D1)/(D1%#SAI PHA-FPAR*CAL PHA)
40y EBARU=(EBAR=C1)/(D1*#SALPHA+ERAR=CALPHA)
405 CONTINUE

201 ONGIL=MCTL

202 ONETL=NETL

203 ONETAL=NETAIL

204 ONXTIL=NXITL

205 HG=GBAR/ONGIL

206 HE=(EBARU+[EBARL)/(2.C#ONETL?

207 HETA=ETATAR/ONETAL

208 HXI=XIBAR/ONXIIL

209 DOJ00ON1=1,N1CS
210 DO100ON2=1,N2CS
211 ANSCS(N1,N2)=0.0
212 ANSPOL{N1,N2)=0.0

213 DO1010OL=1,NGIL

214 DC1010OM=1,NEIL

215 DO1010ON=1,NETAIL

216 DOV010KK=1,NXITL

217 OL=L

218 OM=M

219 ON=N

220 OK=KK

221 GO=((2.0#(0L-1.0)/0NGIL)-1.0)*GBAR

222 EO=((0M-1.0)*(ERARU+EBARL))/CNEIL-EBARL
223 ETAO=((2.0#(ON-1.0)/0ONETAL)-1.0)*ETABAR
224 XI0=((2.0#(0K-1.0)/0ONXIIL)—1.0)#XIBAR

225 D01020J=1,3
22 6R0I=1

227 X1(J)=GO+HG*(0J=1.0)

223 Y1(J)=(EO+HE*(0J=1.0))*SALPHA
229 21(J)=D1-(FO+HE#*(0J=1.0))=#CALPHA




TABLE IV. FORTRAN Listing (Cont'd)

230 X2(J)=ETAQ+HETA=(0J-1.0)
231 Y2(J)=D2#S2T+(XI0O+HXI#(0J-1.0))*C2T

1020 22(J)=D1+D2#C2T— (XTO+HXT*(0J-1.0))*S2T
C

232 DO1030J=1,2
232 DO1030K=1,3

234 AUX=XT1(J)*#2+YT(K)##2+Z1(K)##2
235 R1(JyK)=SQRTF (AUX)

1030 TI1(J,KI=(ZT(K)*CIT-YT(K)=#SI1T)/R1{J,K)
C

236 DO10LOI=1,3
237 DO10L0OJ=1,3

238 DO10uOK=1,3
239 AUX3=(Y2(K)-Y1(I))##2+(Z2(K)-Z1(1))=%2

240 AUX=(X2(J)=XT1(1))##2+AUX3
241 RR1(I,J,K)=SQRTF(AUX)

242 AUX=(X2(J)=-X1(2))==2+AUX3
243 RR2(1,J,K)=SQRTF(AUX)

24L AUX=(X2(J)=-XT(3))##2+AUX3
245 RR3(1,J,K)=SQRTF(AUX)

256 AUX3=YT(1)*(Y2(KI=-YT(IN+ZT1(T)*(Z2(K)-Z1(1))
27 AUX=X1(1)*(x2(J)-X1(1))+AUX3

248 TT1(1,J,K)=AUX/(RT(T,1)*RRI(I,J,K))
249 AUX=X1(2)*(X2(J)=X1(2))+AUX3

250 TT12(1,J,K)=AUX/(R1(2,1)%RR2(1,J,K))
251 AUX=X1(3)#(X2(J)=X1(3))+AUX3

252 TT3(14J4K)=AUX/(RT(3,T)*RR3(I,J,K))

253 AUXT=(Y2(K)=YT(I))*S2T+(Z2(K)=Z1(1))=C2T
254 AUX=(YT(I)=CALPHA+Z1(TI)#SALPHA)*AUX]1

255 F1(I,JyK)=AUX/((RT(T1,1)*x3)*(RR1(I,J,K)*%3))
256 F2(I1,J,K)=AUX/((RI(2,1)#23)=(RR2(I,J,K)%#%3))

257 F3(1,J,K)=AUX/((RT1(3,1)*%3)*(RR3(1,J,K)%%3))

258 IF(N1-1)2,2,2
2 NAUX=N1-1

259 F1(I,J,K)I=FT(I,J,K)=#(T1(1,1)%xNAUX)
260 F2(I1,J,K)=F2(1,JyK)*(T1(2,1)**NAUX])

261 F3(I1,J,K)=F3(1,J,K)=(T1(3,1)**NAUX)
3 IF(N2-1)4,5,4

L NAUX=N?-1
262 F1(I,J,K)=F1(I,J,K)*(TT1{I,J,K)=xNAUX)

263 F2(T4J,K)1=F2(T,J,K)*#(TT2(1,J,K)**NAUX)
264 F3(I1,J,K)=F3(I,J,K)=#(TT3(1,J,K)%=sNAUX)

5 CONTINUE
AUX=Y1(1)*CALPHA+Z1(1)=SALPHA

FT(T, J,K)=FT(T,J,K)=RT{T,1T)/AUX
F2(1,J,K)=F2(I,J,K)*R1(2,1)/AUX

F30T,J,K)=F3(T,J,K)*RT(3,T)/AUX

265 AUXT=1ZT(TT*Y2(K)=YTII)Y#Z2 (K= (ZT{T)=*STIT+YT(T)=CTT)
266 AUX=AUXT+(Z1(I1)#X2(J)=X1(1)*Z2(K))=X1(1)=C1T

267 AUX=AUX+TXTUTY »Y2TRT-YT{TY«X20JTT=XTUT)=STT
268 G1(I14J,K)I=(AUX*F1(I,J,K))/((R1(1,1)#22)=RR1(I,J,K))

269 AUX=AUXT+TZTTT)«X2TI=XTI2ZV*Z2(K) J=X 127 =CTT
270 AUX=AUX+(X1(2)#Y2(K)=Y1(I)=X2(J))=X1(2)*S1T

27T G211, J,KT=TAUX*F21T,J,KY)/7TTRT(Z, IV *=2)#RR2TT,J,KT)
272 AUX=AUXT+(Z1(1)*X2(J)=XT1(3)#Z2(K))*x1(3)=CIT

203 AUX=AUX+ XTI *Y2(KY =Y T{TT*X2TJT T «XTU3T*STT
1040 G3(I,J,K)=(AUX®F3(T1,J,K))/((R1(3,1)%#%2)2RR3(I,J,K))

274 CALLSUMMAD(F1,F2,F3,SUM)




2115
276

TABLE IV. FORTRAN Listing (Cont'd)

ANSCS(NT,N2)=ANSCS(N1,N2)+SUM
CALLSUMMAD(S1.G2,G3,SUM)

101C

ANSPCOL(NT,N2)=ANSPOL(N1,N2)+SUM

21T
278

AUX=HG#HE*HETA#HXI
ANSCS(NI1,N2)=AUX*ANSCS(N],N2)

1000

ANSPOL (N1,N2)=AUX*ANSPOL(N1,N2)

279
406

PRINT 10
IF(SENSESWITCH1IN08,410

L08
409

PRINTLOT
GOTON12

410
412

PRINTUT1
CONTINUE

280
281

PRINTLC
PRINTS0

282

DOVTINT=1,NICS

283
420

N=N1-1
IF(N)Y423,421,423

421
320

xC1=1.0
GOTOu2N

42
u2Yy

2 XC1=C1T==N

CONTINUE

234
285

LOTIN2=1,N2CS
M=N2-1

425
426

TF(®)U22,426,428
XC2=1,0

u27
L22

COT0286
XC2=C2Tax

286
287

XC=XC1&XC2
XP=XC*S1T%SZT

429
28°

XYZ=ANSCCS(N1,N2)/ANSCS(1,1)
PRINTEC, MMy ANSCS(MN]aN2) o XCoANSPOL(NT,N2) 2 XD, XYZ

i1

L2C

CONTINUE
IF(SENSESWITCH2)289,1111

289
291

COTC1
END(C,1,C,0,1)

SUBROUTINESUMMAD(F1,F2,F%,SUM)
DIMENSIONFI(3,2,3),F2(3,3,2)  F2(3,2,3)

(N~

A=0.0
LO&J=1,2,2

DO6K=1,43,2
DO&L=1,2,2

Ly o~ k0

A=A+F1(JsKyL)+FZ(J,K,L)

P=b O%(F1(1s1,2)+F1(1,2, 1)4F (2,1, 1)+F1(1,2,3)+F1(1,2,2)4F1(2,1,3)

°

XAFET(2935 114F1(3,1,2)4F1( 3,2, 1)14F1(2,3,3)+F113,2,3)4F1(3,5342))

B=P+4,08(F2(1,1,1)+F2(1,1,3)4F2(1,3,1)4F2(3,1,1)+

9

XF2(193,3)14F2(2,1+3)4F2(3 1)+F2(3,3,3))

13
P=0+L 0% (F3{1,1,2)+F3(1,2,
XF3(2,1,3)4F3(2 '311)*F3( 21
XF3(3,3,2))

’
1)+E3(2, 1, 1)+F3(1,2,3)+F3(1,3,2)+4
92)+F32(3,2,1)+F31(2,3,3)+4F3(3,2,3)+

10

C=16.08{F1(1,2,2)4F1(25152)4F1(2,2,1)4F2(1,1,2)+F2(142451})+
XF2(2,1,1)+F1(2,2,3)+F1(2,3,2)+F1(3,2,2)+F2(1,2,3)+F2(1,3,2)+

XF2(2,39 1)4F2(3,1,2)+F2(352,1)4F3(1,2,2)4F3(2,1,2)4F3(2,2,1)+
XF2(2,1,3)4F2(2,3,3)+F2(3,2,3)+F2(3,3,2)+F3(2,2,2)+F3(2,2

10

XF3(352,2))
D=64.C*(F1(2,2,2)+F2(1,2,2)+F2(2,1,2)+F2(2,2,3)+

XF2(2y392)+F2(3,24,2)4F3(2,2,2)4F2(2,2,1))

2 E=256.0%F2(2,2,2)

SUM=(A+B+C+D)/21.0

14
15

RETURN
END(0,1,0,0,1)

31



32

REFERENCES

1See for example T. A. Welton, in Fast Neutron Physics, edited
by J. B. Marion and J. L. Fowler (Interscience Publishers, Inc., New
York, in press), Part II, Chap. V. F and W. Haeberli, ibid, Part II,

Chap. V. G for a list of references.

"The Basel Convention', Proceedings of the International

Symposium on Polarization Phenomena of Nucleons, Helv. Phys. Acta,

Supplement VI, 436 (1961).

3
J. E. Evans, United Kingdom Atomic Energy Authority Report
AERE-R3347 (1960).

4A. Langsdorf, Jr., R. O. Lane, and J. E. Monahan, Phys. Rev.
107, 1077 (1957); R. O. Lane, A. S. Langsdorf, Jr., J. E. Monahan, and
A. J. Elwyn, Ann. Phys. 12, 135 (1961).

5

A. J. Elwyn and R. O. Lane (to be published).
6

A. J. Elwyn, R. O. Lane, and A. Langsdorf, Jr. (to be published).
7

S. M. Austin, S. E. Darden, A. Okazaki, and Z. Wilhelmi,
Nuclear Phys. 22, 451 (1961); S. E. Darden, T. R. Donoghue, and C. A.
Kelsey, Nuclear Phys. E,‘ 439 (1961).



GONNE NATIONAL LAB WEST

o




